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Abstract An important step in NMR protein structure

determination is the assignment of resonances and NOEs to

corresponding nuclei. Structure-based assignment (SBA)

uses a model structure (‘‘template’’) for the target protein to

expedite this process. Nuclear vector replacement (NVR) is

an SBA framework that combines multiple sources of

NMR data (chemical shifts, RDCs, sparse NOEs, amide

exchange rates, TOCSY) and has high accuracy when the

template is close to the target protein’s structure (less than

2 Å backbone RMSD). However, a close template may not

always be available. We extend the circle of convergence

of NVR for distant templates by using an ensemble of

structures. This ensemble corresponds to the low-frequency

perturbations of the given template and is obtained using

normal mode analysis (NMA). Our algorithm assigns res-

onances and sparse NOEs using each of the structures in

the ensemble separately, and aggregates the results using a

voting scheme based on maximum bipartite matching.

Experimental results on human ubiquitin, using four distant

template structures show an increase in the assignment

accuracy. Our algorithm also improves the robustness of

NVR with respect to structural noise. We provide a con-

fidence measure for each assignment using the percentage

of the structures that agree on that assignment. We use this

measure to assign a subset of the peaks with even higher

accuracy. We further validate our algorithm on data for two

additional proteins with NVR. We then show the general

applicability of our approach by applying our NMA

ensemble-based voting scheme to another SBA tool,

MARS. For three test proteins with corresponding tem-

plates, including the 370-residue maltose binding protein,

we increase the number of reliable assignments made by

MARS. Finally, we show that our voting scheme is sound

and optimal, by proving that it is a maximum likelihood

estimator of the correct assignments.
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Abbreviations

bb RMSD Backbone root mean square distance

BPG Bipartite graph

CS Chemical shift

EIN N-terminal domain of enzyme I

EM Expectation-maximization

GaIP G-a interacting protein

HD Homology detection

MBM Maximum bipartite matching

MBP Maltose-binding protein

MLE Maximum likelihood estimator

MR Molecular replacement

NMA Normal mode analysis

NMR Nuclear magnetic resonance

NOE Nuclear overhauser effect

NVR Nuclear vector replacement

PR Pseudoresidue

RDC Residual dipolar coupling

SBA Structure-based assignment

SPG Streptococcal protein G
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Introduction

One of the key steps in NMR protein structure determi-

nation is resonance and NOE assignments. The assignment

problem requires mapping spectral peaks to tuples of

interacting atoms in a protein. In this paper, we report a

new algorithm for automated structure-based NMR

assignments by exploiting an ensemble of structural

templates.

Structure-based assignment (SBA) denotes automated

assignment given prior information in the form of the

putative structure (‘‘template’’) of the protein. By analogy,

in X-ray crystallography, the molecular replacement (MR)

technique allows solution of the crystallographic phase

problem when a ‘‘close’’ or homologous structural model is

known, thereby facilitating rapid structure determination

(Rossman and Blow 1962). An automated procedure for

rapidly determining NMR assignments given a homolo-

gous structure will similarly accelerate structure

determination. Furthermore, even when the structure has

already been determined by crystallography or homology

modeling, NMR assignments are valuable to probe pro-

tein–protein interactions and protein–ligand binding (via

chemical shift mapping or line-broadening). Previous SBA

algorithms include CAP (Al-Hashimi and Patel 2002; Hus

et al. 2002), NVR (Langmead et al. 2003; Langmead and

Donald 2004a), (Meiler and Baker 2003), and MARS (Jung

and Zweckstetter 2004b). The idea of correlating unas-

signed experimentally-measured residual dipolar couplings

(RDCs) with bond vector orientations from a known

structure was first proposed by Al-Hashimi and Patel

(2002) and subsequently demonstrated by Al-Hashimi

et al. (2002) who considered permutations of assignments

for RNA. In Hus et al. (2002), RDC-based maximum

bipartite matching (MBM) was successfully applied to

SBA. Similarly, MARS (Jung and Zweckstetter 2004b)

matches RDCs to those calculated from a known structure.

An SBA algorithm should be robust with respect to

structural noise and handle distant structural templates: A

small change in the putative structure should not change

the assignments drastically and it should work even when a

close structural template is not available.

NVR (Langmead et al. 2003; Langmead and Donald

2004a) is an MR-like approach for SBA of resonances and

sparse NOEs. NVR computes assignments that correlate

experimentally-measured HN–15N HSQC, HN-15N RDCs

(in two media), 3D NOESY-15N-HSQC spectra (dNN’s)

and amide exchange rates, to a given backbone structural

model. The algorithm requires only uniform 15N-labeling

of the protein. The NMR data used by NVR can be

acquired relatively rapidly compared to the traditional suite

of experiments used to perform assignments. NVR runs in

minutes and assigns with high accuracy the (HN,15N)

backbone resonances as well as the sparse dNN’s from the

3D 15N-NOESY spectrum. NVR works well only when the

structure of the protein is known or for close templates

(less than 2 Å backbone (bb) RMSD). SBA in general and

NVR in particular have had an impact on algorithms for

NMR methodology (Bailey-Kellogg et al. 2004; Vitek

et al. 2005), and SBA has been important in the determi-

nation of protein structures (Potluri et al. 2006, 2007).

We introduce an algorithm that extends the circle of

convergence of NVR such that distant templates can be

used to obtain high assignment accuracies. We also

improve NVR’s robustness with respect to structural noise.

In addition, we provide a measure of confidence for indi-

vidual assignments.

As in NVR, our procedure takes as input NMR data plus

a single structure P (Fig. 1). P is called the ‘‘template’’ and

is obtained from a putative (remote) structural homolog of

the protein that originated the NMR data. We then generate

an ensemble of structures from P by considering its flexi-

bility, and then make the assignments for each structure in

the ensemble separately. We then aggregate the assign-

ments of each of the models using MBM as a voting

scheme, which we show is a maximum likelihood estimator

(MLE). In our study, we find that this scheme generally

improves the assignment accuracy and improves the

robustness of assignments with respect to structural noise.

The percentage of models that agree on a given assignment

provides an intuitive confidence measure for the assign-

ment. We demonstrate our algorithm on four different

structural models of human ubiquitin, using HD (for

homology detection) (Langmead and Donald 2004b), a

variant of NVR. In contrast to the original NVR, where the

VOTING

TEMPLATE

ASSIGNMENTS−1

CONSENSUS ASSIGNMENTS

ASSIGNMENTS−NASSIGNMENTS−2

NMR
DATASBA SBA

MODEL MODELMODEL1 2 N

SBA

Fig. 1 Overview of our methodology. We start from a template

P. We use normal mode analysis (NMA) to obtain an ensemble of

perturbed models around this template. Each model is in turn used as

an input to a structure based assignment (SBA) algorithm (such as

NVR or MARS) along with measured NMR data to compute the

assignments. Each assignment is then combined using our voting

scheme to obtain the ‘‘consensus’’ assignments
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structural template must be less than 2 Å bb RMSD from

the target, we use templates ranging in bb RMSD between

3.2 and 7.7 Å. The assignment accuracy of NVR for these

distant structural templates ranges between 47–57% for

human ubiquitin. With our new algorithm, the range of the

assignment accuracy improves to 69–74%. Furthermore,

combining the models from all ensembles raises the accu-

racy to 86%. Similarly, for G-a interacting protein (GaIP),

the assignment accuracy increases from 65% to 77%. For

streptococcal protein G (SPG), our results are mixed.

However, combining the models for SPG raises the

assignment accuracy.

We demonstrate the generality of our approach (of using

NMA ensembles around a given template with our voting

scheme) with MARS, which is a significantly different SBA

tool from NVR (in terms of its algorithm and its input data).

MARS can use both 13C- and 15N-labeled data and takes as

input the observed intra- and inter-residual chemical shifts

grouped into pseudoresidues (PR). Depending on the type of

available spectra, MARS uses chemical shifts of Hi
N, Ni, C0i-1,

Ci
a, Ca

i-1, Cb
i, Cb

i-1, grouped into a PR with the Hi
N and Ni

serving as an anchor, obtained from an 15N-1H HSQC

spectrum. In addition, when a template structure is available,

MARS can use arbitrary RDCs from triple-resonance

experiments to help the assignments. MARS is a hybrid

assignment framework that optimizes local and global

quality of fit of the amino acid sequence to the pseudoresi-

dues. It links pseudoresidues to obtain PR segments of length

five to two using sequential connectivity information in the

linking stage. It then maps these segments to the amino acid

sequence in the matching stage to obtain the assignments. It

compares these assignments with one obtained using a global

energy function and retains the consistent assignments.

MARS follows an iterative procedure, where the experi-

mental data is perturbed by adding noise to extract robust

assignments. MARS computes a reliability information for

each assignment, denoting each assignment as with low,

medium or high confidence. It also lists all possible assign-

ments for a given PR, along with their probabilities. We

demonstrate our algorithm on three proteins that come with

the MARS software distribution (Jung and Zweckstetter

2004a), and corresponding templates. The templates are

close structural homologs of the corresponding target pro-

teins, and with 100% sequence identity to the target proteins.

The target proteins are: 76-residue human ubiquitin, 259-

residue amino terminal domain of enzyme I from E. Coli

(EIN), and 370-residue maltose-binding protein (MBP).

With our new technique, we show that the number of correct

and reliable (high confidence) assignments increases in all

test cases. As in Jung and Zweckstetter (2004b), we apply our

framework to MARS with varying amount of data, such as

with and without sequential connectivity information, and up

to three RDCs per residue. Depending on the amount of data

used as input, the number of correct and reliable assignments

increases by up to 23 at the expense of introducing three

incorrect assignments (corresponding to a 3-fold increase in

the number of correct assignments). Furthermore, the num-

ber of incorrect assignments generally does not increase.

Using an ensemble of structures in SBA is reasonable,

since the structures of proteins in the PDB presumably

correspond only to the ground state of these proteins (Kay

1998). The NMR data acquired from a protein in solution

corresponds to a time- and ensemble-average over the

many conformations assumed during data acquisition. We

use NMA to perturb the template to obtain an ensemble of

structures. NMA is a technique commonly used to study

the low-frequency motion of proteins. It represents the

energy landscape around a given energy minimum with a

harmonic approximation and solves for the equations of

motion within that well analytically. It has been shown that

over half of the known protein movements can be modeled

by displacing the protein along at most two low frequency

normal modes (Krebs et al. 2002). Furthermore, NMA has

been shown to reproduce the deformations in the core of

homologous proteins caused by sequence differences in 35

large, diverse, and well studied superfamilies (Leo-Macias

et al. 2005). Therefore, it seems reasonable to expect that

the conformational differences between the template and

the target protein can be modeled by NMA. In contrast to

classical molecular motion simulation techniques such as

molecular dynamics, NMA can very rapidly compute an

ensemble of structures that correspond to the likely con-

formations assumed by the molecule around its energy

minimum. NMA has been successful in predicting experi-

mental quantities such as temperature factors of proteins

(Bahar et al. 1997). We use coarse-grained NMA where

several amino acids are grouped into a single super-residue

which effectively removes the small scale fluctuations of a

protein such as sidechain motions to model the slow, large-

scale motions (such as backbone rearrangements) (Suhre

and Sanejouand 2004a).

To the best of our knowledge, ours is the first approach that

uses ensembles for structure-based resonance assignments.

Note that previously ensembles have been used successfully in

structure determination (given assignments) (Best and Ven-

druscolo 2004), and for NOE assignments (given resonance

assignments) (Mumenthaler et al. 1997; Güntert 2004). Our

results show that ensemble-based approaches are also useful

for structure-based resonance assignments.

NMA was analogously used by Suhre and Sanejouand

(2004b) for protein structure determination by MR, using

X-ray diffraction data. The authors observed that although

the original template did not help solve the crystallographic

phase problem, there existed a structure in the NMA
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ensemble that enabled the refinement of the target struc-

ture. This structure was chosen from the ensemble using a

scoring function.

Our contributions in this paper are:

1. The use of NMA structural ensembles in structure-

based NMR assignments,

2. ‘‘Robust’’ NMR assignments with respect to structural

noise, by which we mean there is only a small change

in assignment accuracy when the input structure

changes slightly (note that this is not the case in

general for maximum bipartite matching based assign-

ment algorithms (including Langmead and Donald

2004a),

3. Increased radius of convergence of NVR with respect

to the target–template structural similarity,

4. Improved assignment accuracy of NVR for distant

templates (by up to 22%),

5. A confidence measure for each assignment,

6. A demonstration of the generality of our framework by

improving the assignment accuracy of MARS on three

test proteins (by up to 3-fold), and

7. A proof that our voting rule, which aggregates the

assignments corresponding to individual models, is a

maximum likelihood estimator.

Preliminaries

NMR data used by NVR

An assignment algorithm must determine the mapping of

the resonances and NOEs to the corresponding nuclei of

the protein. We can define the assignment problem as the

mapping of the peaks to the corresponding residues, due to

the specific set of NMR data used by our framework.

We use the following NMR data: HN-15N HSQC,

NOESY-15N-HSQC (yielding sparse dNN’s, observed

between nearby pairs of amide protons), NH RDCs in two

media (which provide global orientational restraints on NH

amide bond vectors), 15N TOCSY (for the sidechain

chemical shifts), and amide exchange HSQC (to identify,

probabilistically, solvent-exposed amide protons).

RDCs provide global information on the orientation of

internuclear vectors. For each RDC r, we have the fol-

lowing RDC equation (Tolman et al. 1995; Tjandra and

Bax 1997):

r ¼ DmaxvTSv: ð1Þ

Here Dmax is the dipolar interaction constant, v is the

internuclear bond vector orientation relative to an arbitrary

molecular frame, and S is the 3 9 3 Saupe order matrix

which describes the average substructure alignment in the

weakly-aligned anisotropic phase. Equation 1 shows the

quadratic dependence of r on v, thus explaining the

sensitivity of RDCs (and hence, SBA algorithms that use

RDCs, such as NVR) with respect to structural noise.

Only unambiguous dNN’s are used in NVR. Typically

only a few unambiguous dNN’s (e.g., 43 for ubiquitin) can

be obtained from the 3D-NOESY. These dNN’s are auto-

matically-assigned as a byproduct of NVR’s resonance

assignments (Langmead and Donald 2004a).

NVR

NVR is an automated SBA algorithm for proteins of known

structure or with a known close structural homolog. NVR

uses MBM in an expectation maximization (EM) frame-

work to compute the assignments. Each peak p and residue

r form the nodes of a bipartite graph (BPG), where one set

of vertices is the set of peaks, the other set of vertices is the

set of residues, and the edges correspond to the likelihood

of assigning p to r in the bipartite graph. The EM frame-

work is used to iteratively select the most likely (peak,

residue) assignment. More details can be found in (Lang-

mead and Donald 2004a).

NVR integrates various NMR data as a means to

increase the signal-to-noise ratio. The signal is the com-

puted likelihood of the assignment between a peak and the

(correct) residue. The noise is the uncertainty in the data,

where the probability mass is distributed among multiple

residues. Each line of evidence (i.e., experiment) has noise,

but the noise tends to be random and thus cancels when the

lines of evidence are combined. Conversely, the signals

embedded in each line of evidence tend to reinforce one

another, resulting in relatively unambiguous assignments.

NVR has the advantage that it only needs 15N-labeled

data, which is cheaper to obtain than 13C-labeling, which is

required by many automated assignment algorithms. NVR

only uses unassigned data.

Methods

An overview of our methodology is presented in Fig. 1.

Our algorithm starts with a structural model. We apply

NMA to this model to obtain an ensemble of structures.

Then, for each member of the ensemble, we predict the

backbone chemical shifts, and we also extract the NH

amide bond vectors as well as proton coordinates of the

amide bonds. NVR requires these, as well as the experi-

mental NMR data. We predict the chemical shifts using the

BMRB (Seavey et al. 1991), SHIFTS (Xu and Case 2001),

and SHIFTX (Neal et al. 2003), following the protocol in

Langmead and Donald (2004a, b). We then run NVR for

each of the structural models. We combine the resulting

assignments using MBM (Fig. 2). The MBM is done on a
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BPG in which one set of nodes represents peaks and the

other represents residues. The edge weights are simply the

number of models in the ensemble that vote for the cor-

responding assignment. We used the Hungarian (Kuhn–

Munkres) algorithm (Kuhn 1955), as implemented by

N. Borlin, to solve MBM. While MBM has been used

previously for NMR assignments (Hus et al. 2002; Xu

et al. 2002; Langmead and Donald 2004a), edge-weights

based on votes by a structural ensemble are novel.

We tested our algorithm on NVR with three proteins, and

a total of seven distant templates, previously studied in

Langmead and Donald (2004b). They are listed in Table 1.

The three proteins are the 76-residue human ubiquitin (PDB

ID 1D3Z, (Cornilescu et al. 1998)), the 56-residue strep-

tococcal protein G (SPG) (PDB ID 3GB1, (Kuszewski et al.

1999)), and the 128-residue GaIP (PDB ID 1CMZ, (De

Alba et al. 1999)). For these proteins, the NMR data (but

not the actual structures) were used by our algorithm. For

ubiquitin, the NH residual dipolar couplings recorded in two

separate media (bicelle and phage) (Cornilescu et al. 1998),

and HN–15N HSQC and NOESY-15N-HSQC spectra (Harris

2002) were used. For SPG and GaIP, the chemical shifts

deposited into BMRB (Seavey et al. 1991) and amide-bond

RDC data (Kuszewski et al. 1999; De Alba et al. 1999,

resp.) were used. A set of sparse, unassigned dNN’s were

simulated for SPG and GaIP using the target structure and

BMRB shifts as in Langmead and Donald (2004b). For all

three proteins, amide-exchange data and TOCSY data were

simulated using the target structure and BMRB shifts as

previously described (Langmead and Donald 2004b). The

template structures were obtained from the structural

homologs of the target protein by homology modeling, as

previously described (Langmead and Donald 2004b), using

MODELLER (Sali and Blundell 1993). MODELLER was

used to construct a backbone model for the target using

template’s backbone structure. Next, the sidechains for the

model were constructed using MAXSPROUT (Holm and

Sander 1991). MAXSPROUT considers rotamers for each

sidechain and avoids steric clashes. Hydrogen atom coor-

dinates were added to the template structures and these

structures were energy-minimized using the PROTONATE

and SANDER modules of AMBER (Pearlman et al. 1995),

respectively. There is less than 30% sequence identity

between each target protein and its structural homologs. We

report in Table 1 the backbone RMSD as well as the CE

RMSD of these distant templates. The CE RMSD refers to

the RMSD of the aligned (homologous) regions between the

template and the target, as computed by CE (Shindyalov

and Bourne 1998). CE performs a combinatorial search to

find the optimal structural alignment, and matches the

vectors between Ca atoms to obtain aligned fragment pairs,

which it optimizes using dynamic programming. The

aligned regions measure the degree of homology between

the target and the template.

We further tested our algorithm on three more proteins

and a set of three structurally close templates, previously

studied by Jung and Zweckstetter (2004b), and that came

with the MARS software distribution (Jung and Zweck-

stetter 2004a). The target proteins are, human ubiquitin

(PDB ID 1D3Z), the 259-residue amino terminal domain of

enzyme I from E. coli (EIN) (PDB ID 3EZA), and the 370-

residue maltose-binding protein (MBP) (PDB ID 1EZP).

The set of NMR data used for these proteins, as well as the

template information, is given in Table 3. Unlike our tests

with NVR, in which we used a more distant ensemble of

structures, the templates are structurally closer to the target

structure (the bb RMSD ranges between 0.4–3.7 Å). Hence

this study provides both a test of our algorithm with a

significantly different SBA tool, as well as with structurally

similar templates.

For both NVR and MARS, we used an NMA webserver,

elNémo (Suhre and Sanejouand 2004a) to obtain an

ensemble of structures around the template. We computed

the five lowest-frequency normal mode displacements,

with default parameters. Each of the low frequency normal

modes returned 11 structures, corresponding to the motion

of the template along that normal mode. We thus obtain 55

structures. We also displaced the template structure bidi-

rectionally along its two lowest frequency normal modes,

resulting in a total of 176 structures per template. The bb

RMSD of the most distant structure to the starting model is

less than 3 Å.

peaks residues

Aggregate bipartite graph

Final Assignment

Maximum Bipartite Matching

Model Model1Model N2

Fig. 2 Our ensemble-based voting algorithm (maximum bipartite

matching) combines the assignments for each model. The aggregated

bipartite graph (BPG) combines the BPGs corresponding to each of

the individual models. In the aggregate bipartite graph, the edge

weight is one for the continuous lines, two for the dashed edges, and

three for the dotted edge
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Our algorithm runs in O(mn + mn2.5 log(cn)) time,

where m is the number of models in the ensemble, n is the

number of residues in the target protein, and c is the

maximum edge weight in an integer-weighted bipartite

graph. In comparison, NVR runs in time O(n2.5 log(cn)),

whereas HD has a time complexity of O(pn2.5 log(cn) + p

log p + pn), where p is the number of proteins in a data-

base of structural models. For a discussion of the

complexity of NVR and HD, see Langmead and Donald

(2004a, b) respectively. For reference, c is a constant and is

dictated by the resolution of the NMR data. NVR runs in

minutes on a desktop PC to assign a protein with about 56–

128 residues using one template.

Results

We ran NVR for all three target proteins, with the corre-

sponding templates obtained from structural homologs, for

each of the ensemble of models obtained by NMA. We

report the assignment accuracy for the template structure,

as well as the range of accuracies in the NMA ensemble in

Table 1. It can be seen that if we could choose the right

template from this ensemble, we would improve the

assignment accuracy of NVR. However this requires a

scoring function that correlates strongly with the assign-

ment accuracies.

Using a scoring function to choose a model

from the ensemble

Suhre and Sanejouand (2004b) used NMA to perturb the

structural model, and then chose a perturbed template

structure with a scoring function (‘‘free R factor’’) in MR in

X-ray crystallography, which allowed them to solve the

target protein structure. We hypothesized that we could

follow a similar methodology to choose a template from

the NMA ensemble as input to NVR in NMR structure

determination.

The HD score function combines the ‘‘preference list’’ of

all the seven ‘‘voters’’ of NVR. These ‘‘voters’’ correspond

to the NMR data used by NVR. They are: RDCs in two

media, chemical shifts predicted using three different pro-

tocols (Langmead and Donald 2004a), amide-exchange and

TOCSY data. Each ‘‘voter’’ has a ranked list of probabilities

(‘‘preference list’’) for each peak, corresponding to the

likelihood of matching that peak with each residue (e.g.,

according to RDCs). The HD scoring function (Langmead

Table 1 Assignment accuracy (% correct assignments) of NVR with distant templates for corresponding target proteins

Targeta

protein

Homologb bb

RMSDc

(Å)

CE

RMSDd

(Å)

Sequence

identity

(%)e

Originalf Lowest–

highestg
HD

Scoreh
Ensemblei Confidentj

Accuracy (%)

Human

ubiquitin

1RFA 8.0 (7.4–9.5) 2.2 (89) 12 51 19–67 57 73 97

1EF1:A[4–84] 6.3 (6.0–9.0) 1.7 (38) 10 57 17–69 63 74 100

1H8C:A 6.7 (6.4–8.4) 1.9 (89) 16 47 21–76 51 69 89

1VCB:B 3.5 (3.4–5.1) 3.8 (44) 13 53 13–73 64 74 95

All templatesk – – – – 13–76 64 86 100

GaIP 1DK8:A 2.7 (2.6–2.7) 1.9 (82) 29 65 34–78 46 77 96

SPG 1HEZ:E 5.0 (5.0–7.0) 2.0 (94) 13 60 25–76 71 62 79

1JML:A 8.6 (7.2–11.0) 1.9 (75) 13 65 33–80 64 60 83

All templatesk – – – – 25–80 71 69 87

a The target protein (source of the NMR data). This structure was not used by our algorithm. Instead, a template structure was used, obtained

using homology modeling and energy minimization, starting from the structural homolog
b PDB ID for the structural homologs
c overall backbone (bb) RMSD between the template structure and the target protein’s structure. The range of the RMSD distance of the

ensemble to the target is provided in parenthesis
d bb RMSD of the structural alignment as computed by CE (Shindyalov and Bourne 1998). The percentage of the residues in CE alignment is

shown in parenthesis
e The sequence identity between the sequences of the target protein and the structural homolog, as computed by CE
f Assignment accuracy obtained using the template
g The range of assignment accuracy over the NMA ensemble: the minimum and the maximum
h The accuracy of the structure in the NMA ensemble with the highest HD score
i The accuracy with our NMA ensemble-based voting scheme
j Assignment accuracy for the ‘confident’ peaks (where the confidence threshold is 0.5)
k Obtained by combining all corresponding NMA ensembles
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and Donald 2004b) simply multiplies and normalizes these

probabilities to obtain an overall matrix representing the

aggregated preference of all the voters for each peak. Given

an assignment, the set of probabilities corresponding to

individual (peak, residue) assignments are combined and

returned as the HD score.

We used HD score to choose a model that has the

highest HD score from the NMA ensemble. The assign-

ment accuracy for this structure is in column entitled ‘HD

score accuracy’ of Table 1. The correlation of the HD score

with the assignment accuracies is shown in Fig. 3. Each

point in the scatter plot corresponds to one of the structural

models. The x-axis corresponds to the HD score and the y-

axis to the assignment accuracy. The correlation between

the HD score and the assignment accuracy is 0.44. It can be

seen that HD score cannot be used reliably to choose a

model with a higher assignment accuracy from the

ensemble, with respect to the starting template.

MBM voting over the NMA ensemble

We used MBM to aggregate the assignments corresponding

to all of the models in the NMA ensemble (see Methods).

The results of this scheme are in column entitled

‘Ensemble accuracy’ of Table 1. For all three proteins with

the corresponding templates, the assignment accuracy

improves in all but one of the seven protein–template pairs,

with respect to the starting structural model, by up to 22%.

We also combined the assignments of all the models cor-

responding to all four templates for human ubiquitin and

both templates for SPG, obtaining an even higher accuracy

(86% and 69%, respectively, shown in column entitled

‘Ensemble accuracy’ and row entitled ‘All templates’ of

Table 1). For SPG using the template obtained from pdb ID

1JML (which is 8.7 Å bb RMSD from SPG), the assign-

ment accuracy actually decreases with the consensus

scheme. Note that the template obtained from 1JML is the

farthest structure from its corresponding target structure in

our test cases, and it may be that this starting template is

outside the radius of convergence of NVR.

Confidence measure

Given the assignments for each structural model in the

NMA ensemble and the consensus assignments computed

using MBM voting, we can compute the fraction of models

that agree on a given resonance assignment. This ratio can

be used as a ‘confidence’ measure for that assignment.

Intuitively, the larger the number of models that agree on a

(peak, residue) assignment, the less likely it is that that

assignment is due to noise.

In Fig. 4, we show the ratio of the models that agree on

a particular assignment (the ‘confidence’, shown on the

y-axis) for each individual peak (the x-axis), for human

ubiquitin with template obtained from 1RFA (which is

7.7 Å bb RMSD from human ubiquitin). Each blue ‘circle’

(resp., red ‘cross’) corresponds to a correct (resp., incor-

rect) assignment. The ratio of ‘blue circles’ to all signs
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Fig. 3 HD score vs. assignment accuracy. Each of the points

correspond to a template in the normal mode analysis (NMA)

ensemble. A representative set of templates for all three target

proteins are shown. The x-axis is the HD-Score of the template

structure, whereas the y-axis is the assignment accuracy (%). The

correlation coefficient is 0.44
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Fig. 4 Assignments and confidences for human ubiquitin with pdb

ID 1RFA as template and NVR. The diagram shows in blue (‘o’) the

correct resonance assignments, and in red (‘x’) the incorrect ones. The

x-axis corresponds to the individual peaks from the ubiquitin spectra,

and the y-axis shows the ‘‘confidence’’, which is the fraction of the

models that agree on the corresponding assignment for that peak over

all models. The peaks are sorted in the order of ascending

confidences. The assignment accuracy increases to 71% with our

algorithm (compared to 51% with the single-structure based NVR)
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determines the accuracy of the consensus assignments

reported in column entitled ‘Ensemble accuracy’ of

Table 1. The blue ‘circles’ have a higher confidence value

than the red ‘crosses’ in general, suggesting that the

‘confidence’s indeed correlate with the assignment accu-

racy. The higher the ‘confidence’ for an assignment, the

more likely it is to be correct.

In Fig. 4, there are very few incorrect assignments for

which more than half of the models agree. Therefore, we

selected a threshold of 50%, and called an individual

assignment ‘confident’ if more than 50% of the models

agree on that assignment. The assignment accuracy of the

confident assignments is in the last column of Table 1. We

also combined all the models and report the corresponding

‘confident’ assignment accuracy. The ‘confident’ assign-

ment accuracy is higher than consensus assignment

accuracy in all cases.

If we select a lower confidence threshold than 0.5, we

can include more of the correct individual (peak, residue)

assignments, at the expense of introducing some of the

incorrect individual (peak, residue) assignments. This

trade-off can be seen with a receiver–operator character-

istic (ROC) curve. For each threshold, one can compute the

sensitivity and the specificity and plot these points as in

Fig. 5. For instance, for the target protein SPG with pdb ID

1HEZ as template (which is at 5.1 Å from SPG), a confi-

dence threshold of 0.9 seems more suitable to correctly

assign more than 40% of the peaks (corresponding to 13

peaks) without introducing any incorrect assignments. On

the other hand, for the target protein ubiquitin with 1EF1 as

template (which is at 6.2 Å from ubiquitin), a confidence

threshold of 0.5 results in 25 correctly assigned peaks with

no incorrect assignment among them. The trade-off

between choosing a confidence threshold of 0.9 and 0.5 can

also be seen in Table 2, where the absolute number of

correct and incorrect peaks found using both thresholds are

provided. One can select a confidence threshold to return

the higher number of correct assignments, while mini-

mizing the number of incorrect assignments.

Robustness with respect to structural noise

We call a structure-based assignment algorithm ‘‘robust’’ if

its result does not change significantly when the input

structure changes slightly. This is a reasonable definition of

robustness, since due to structural noise, there may be

small perturbations in the input structure. In order to

demonstrate the improved robustness in the assignment

accuracies with the consensus and ‘confident’ assignment

schemes, we chose 11 structurally-similar starting models

for human ubiquitin from the NMA ensemble computed

around the template obtained from pdb ID 1H8C (which is

6.7 Å bb RMSD from human ubiquitin), and computed the

assignment accuracies using the original NVR (Langmead

and Donald 2004a) and our ensemble-based voting algo-

rithm. For our approach, we report both the accuracy of the
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Fig. 5 Receiver–operator characteristic (ROC) Curve for varying

confidence thresholds: (Left) for SPG with the template obtained from

1HEZ; (Right) for ubiquitin with the template obtained from 1EF1.

The confidence threshold is the ratio of models that must agree on a

particular (peak, residue) assignment in order to include that pairing

on the reported subset of assignments. For a given threshold, the x-

axis is the ratio of reported incorrect assignments over all incorrect

assignments (1-specificity). The y-axis is the ratio of correct

assignments over all correct assignments (sensitivity). An ideal

confidence threshold would be such that the returned assignments

would include a maximum subset of the correct assignments and a

minimum subset of the incorrect assignments. (Left) For this case, a

confidence threshold of 0.9 would return about 40% of the correct

assignments with no incorrect assignments. (Right) For this case, a

confidence threshold of 0.5 would return about 50% of the correct

assignments with no incorrect assignments
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resulting assignments after voting, and the accuracy of the

‘confident’ assignments selected with a confidence

threshold of 0.5. The ‘confident’ assignments comprise a

significant (more than 35%) subset of all (peak, residue)

assignments. Note that our approach requires constructing

an ensemble around each of these 11 structural models.

The results are in Fig. 6. The x-axis corresponds to the

method used, where the first column is with the assign-

ments using a single structural model, the second column is

obtained using the consensus assignment scheme, and the

third column is with the ‘confident’ assignment scheme.

The plot shows the range of the assignment accuracies, the

lower and upper quartiles, and the red line in the middle of

the box is the median of the assignment accuracies. The

whiskers show the extent of the data and the outliers are

shown with ‘+’s. As can be seen, our approach not only

improves the assignment accuracies, but also reduces the

variance. Therefore, our ensemble-based assignment

scheme improves the robustness of NVR with respect to

structural noise.

Application of our framework to MARS

We used our NMA ensemble-based voting scheme with

MARS, an SBA tool that is significantly different from

NVR in terms of the data it uses, as well as its algorithm.

We tested our NMA ensemble-based voting scheme on

three target proteins with corresponding close structural

templates (Table 3). We only considered the subset of

assignments that are labeled as ‘reliable’ (‘H’igh and

‘M’edium reliability) by MARS. MARS calls an assign-

ment ‘H’ighly reliable if it is consistent across all solutions

obtained by MARS. According to Jung and Zweckstetter

(2004c), ‘M’edium does not fulfill all criteria for ‘H’ and

the criterion is adjusted automatically according to the

completeness of the input data. We report the number of

correct and incorrect reliable assignments with each tem-

plate in Table 4. We find and report the confident subset of

the assignments with a confidence threshold of 0.05 in

order to automatically discard incorrect assignments made

by individual models in the ensemble. As in Jung and

Zweckstetter (2004b), we tested our framework with

MARS on different sets of data, such as with and without

sequential connectivity information, and by varying the

number of RDCs per residue. We report the number of

correct and incorrect assignments for the original template,

for the template in the NMA ensemble that has the highest

number of reliable assignments, and the result of our voting

scheme. Depending on the amount of data used as input,

the number of correct and reliable assignments increases by

Table 2 Effect of varying the confidence threshold: Number of

correct and incorrect peaks with NVR with distant templates for

corresponding target proteins, with varying confidence thresholds

Targeta

protein

Homologb # Correct

(# incorrect)c
# Correct

(# incorrect)d

Human ubiquitin 1RFA 32 (1) 7 (0)

1EF1 25 (0) 6 (0)

1H8C 25 (3) 9 (0)

1VCB 35 (2) 8 (1)

All templatese 29 (0) 5 (0)

GaIP 1DK8 75 (3) 38 (2)

SPG 1HEZ 27 (7) 13 (0)

1JML 29 (6) 16 (0)

All templatese 26 (4) 11 (0)

a The target protein (source of the NMR data). This structure was not

used by our algorithm. Instead, a template structure was used,

obtained using homology modeling and energy minimization, starting

from the structural homolog
b PDB ID for the structural homologs
c Number of correct (resp., incorrect) confident peaks with a confi-

dence threshold of 0.5
d Number of correct (resp., incorrect) confident peaks with a confi-

dence threshold of 0.9
e Obtained by combining all corresponding NMA ensembles
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Comparison of the Range of Assignment Accuracies

Fig. 6 Our ensemble-based voting scheme improves the robustness

of NVR against structural noise, and increases the assignment

accuracies. We show the distribution of the assignment accuracies

with the single-structure based NVR and our ensemble-based voting

scheme with NVR, for 11 starting structures (obtained along an

individual normal mode) that are structurally similar, for human

ubiquitin with 1H8C as template. The first column shows the

distribution of the assignment accuracies with single-structure NVR.

The second column shows the accuracy with our ensemble-based

voting scheme, and the third column shows the assignment accuracy

of the subset of ‘confident’ assignments (with a confidence threshold

of 0.5). The boxplot shows the lower and upper quartile, and the

median in red. The whiskers show the extent of the accuracy results

and the outliers are shown with ‘+’ sign. There is only one outlier.

The variance in assignment accuracies decreases with our algorithm,

while the assignment accuracy increases
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8 for EIN and by up to 6 for MBP, while the number of

incorrect assignments decreases or stays constant in most

cases. For human ubiquitin, we compute the assignments

using pdb ID 1UBQ as template, both with and without

sequential connectivity information, and using up to three

RDCs per residue. The number of correct reliable assign-

ments increases by up to 23 at the expense of introducing

three incorrect assignments (corresponding to a 3-fold

increase in the number of correct assignments). Note that

for MARS, unlike NVR, the best model in the NMA

ensemble also leads to improved assignment accuracies.

For instance, for the ubiquitin target without sequential

connectivity information and with 2 RDCs per residue, the

number of correct assignments increases by 15 while the

number of incorrect assignments increases by one, for the

best model in the NMA ensemble. This corresponds to 96%

assignment accuracy with more than twice the original

number of assignments.

Discussion and conclusions

In this paper, we improved the assignment accuracy of

NVR for distant structural models, and made it robust with

respect to structural noise. On three different proteins, with

distant structural homologs, we obtained an increased

Table 3 Proteins used with MARS

Targeta

protein

Template

(crystal)

structureb

(PDB ID)

Sequencec

identity

(%)

# of

residues

with

data

# of

residues

BMRB

Code

RDCs

(PDB

ID)

bbd

RMSD

(Å)

CEe

RMSD

(Å)

Ubiquitin 1UBQ 100 76 72 – 1D3Z 0.7 0.5 (100)

EIN 1ZYM 100 259 248 4106 3EZA 3.7 1.2 (94)

MBP 1DMB 100 370 335 4354 1EZP 3.4 3.3 (99)

a The target protein (source of the NMR data). This structure was not used by MARS. Instead, a template structure was used
b PDB ID for the template structure. Unlike NVR, these templates were not used in homology modeling, but directly used with MARS
c The sequence identity between the sequences of the target and template protein, as computed by CE (Shindyalov and Bourne 1998)
d Backbone (bb) RMSD between the template and the target protein structure
e Backbone (bb) RMSD of the structural alignment as computed by CE (Shindyalov and Bourne 1998). The percentage of the residues involved

in CE alignment is shown in parenthesis

Table 4 MARS assignment accuracy improves with our NMA ensemble-based voting algorithm

Protein name Template RDCs Chemical

Shifts

for linking

Chemical shifts

for matching

Reliable assignments # correct (# incorrect)

Original modela Best modelb NMA ensemblec

Without sequential connectivity information

Human ubiquitin 1UBQ 1DNH – C0i-1, Ca
i-1, Cb

i-1 11 (0) 16 (0) 18 (0)
1DNH

1DNC0 – C0i-1, Ca
i-1, Cb

i-1 11 (0) 26 (1) 34 (3)
1DNH, 1DNC0,

1DCaC0 – C0i-1, Ca
i-1, Cb

i-1 51 (3) 51 (3) 57 (1)

With sequential connectivity information
1DNH Ca C0i-1, Ca

i-1, Ca
i 51 (0) 67 (2) 66 (3)

1DNH, 1DNC0 Ca C0i-1, Ca
i-1, Ca

i 70 (0) 72 (0) 70 (0)
1DNH, 1DNC0,

1DCaC0 Ca C0i-1, Ca
i-1, Ca

i 72 (0) 72 (0) 72 (0)

EIN 1ZYM 1DNH Ca, Cb C0i-1, Ca
i-1, Ca

i, Cb
i-1, Cb

i 238 (2) 244 (0) 246 (2)

MBP 1DMB 1DNH Ca, Cb C0i-1, Ca
i-1, Ca

i, Cb
i-1, Cb

i 323 (2) 328 (0) 329 (1)
1DNH, 1DNC0 Ca, Cb C0i-1, Ca

i-1, Ca
i, Cb

i-1, Cb
i 328 (0) 331 (0) 331 (0)

1DNH, 1DNC0,
1DCaC0 Ca, Cb C0i-1, Ca

i-1, Ca
i, Cb

i-1, Cb
i 327 (0) 331 (0) 331 (0)

MARS links fragments of pseudoresidues together (in the ‘‘linking’’ stage) and then maps them to the amino acid sequence (in the ‘‘matching’’

stage). The chemical shifts used for linking and matching are listed
a The number of correct (resp., incorrect) reliable (denoted as ‘M’edium and ‘H’igh reliability in MARS) assignments returned by MARS for the

original template
b The results for the structure in the NMA ensemble that has the highest number of reliable assignments, as returned by MARS
c The number of reliable and confident assignments with our ensemble-based voting scheme. We used a confidence threshold of 0.05
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assignment accuracy compared to the initial structural

model for all cases but one, which used the template far-

thest from the target structure in our test set. However, in

this case, combining the ensembles from both templates

still increased the assignment accuracy. We also calculated

a measure of confidence in the individual assignments. We

used this measure to assign a subset of the peaks with even

higher assignment accuracy. We also improved the

robustness of NVR with respect to structural noise. We

further demonstrated the general applicability of our

approach to SBA by improving the assignment accuracy of

MARS, a significantly different SBA algorithm from NVR.

Given a distant structural homolog, our methodology used

NMA to obtain a set of structural models, which were then

provided as input to NVR. We combined the NVR assign-

ments for each of these structural models by maximum

bipartite matching. The percentage of structural models that

agreed on a given assignment provided the confidence

measure. We also showed (see Appendix) that MBM is a

maximum likelihood estimator of the correct assignments.

The greatest improvement with our ensemble-based

assignments comes when we do not have sequential con-

nectivity information. Nevertheless, modest improvements

are seen even with sequential connectivities. Even these

modest improvements are potentially useful, and our

results represent a significant improvement over all previ-

ous structure-based assignment algorithms (e.g., Hus et al.

2002; Meiler and Baker 2003) for distant structural

homologs (as opposed to exact crystal structure). No for-

mer SBA algorithm performs well using even slightly

distant homologs. For instance, (Hus et al. 2002) was tes-

ted only on the crystal structure. In Meiler and Baker

(2003), assignment accuracies in the range of only 5% to

40% were obtained using ROSETTA models with 3–6 Å

RMSD from the native structure. Our approach tests

whether ensembles for assignments can begin to overcome

this bottleneck, and forms a basis for SBA that can be

improved in the future.

Our approach demonstrates that an ensemble of struc-

tures simulating the fluctuations of a protein in its native

state improves the accuracy and robustness of SBA. Fur-

thermore, our voting scheme reinforces the signal (for the

correct assignments), whereas the noise (incorrect assign-

ments) cancels out. This is supported by the fact that we

obtain high assignment accuracies despite the large fluc-

tuations in assignment accuracies across the ensembles.

Therefore, NMA is useful for both MR in X-ray crystal-

lography (Suhre and Sanejouand 2004b) and SBA in NMR

(this paper). Note that our results with MARS show that the

best structure in the NMA ensemble helps improve the

assignment accuracy, with respect to the starting template,

analogous to (Suhre and Sanejouand 2004b). However,

unlike (Suhre and Sanejouand 2004b), we also show that

an entire ensemble is useful to improve the assignment

accuracy with NVR.

It is interesting that our voting scheme obtains an

assignment accuracy that is greater than or equal to the

maximum assignment accuracy achieved by any individual

structure in the NMA ensembles, both with MARS and NVR,

for most target protein–template pairs. This suggests that our

voting scheme is more likely to improve the assignment

accuracy than any single-structure scoring function.

An analysis of our assignments reveals that the confident

assignments (with a confidence threshold of 0.9) which

have 95% or higher assignment accuracy mostly fall into

regular secondary structure elements. For ubiquitin, GaIP

and SPG, 1/5, 3/40 and 1/11 of the confident assignments

fall into loop regions, respectively; furthermore for GaIP,

the sixth helix contains most of the correct assignments,

similarly, most of the confident assignments of SPG are in

its alpha helix. The secondary structure elements are the

similar regions between the target and the template protein,

and therefore it is expected to find most of the correct

assignments in those regions.

We envision three scenarios where our ensemble

approach is useful. The first is for medium-sized proteins.

One can perform a suite of triple-resonance experiments

and use MARS with our ensemble method in order to

improve MARS assignments, as was shown in this paper.

Thus, we tested the hypothesis that SBA can be improved

using ensembles, for medium-sized proteins. The second

scenario is also for medium-sized proteins, but our NVR

protocol requires only 15N-labeling and reduced spectrom-

eter time. While RDCs must be measured, recent progress

made by Tolman and co-workers (Ruan and Tolman 2005)

make it more convenient to find multiple alignment media

for the proposed RDC measurements. Measurement of

RDCs for small- to medium-sized proteins usually only

needs 2D IPAP experiments, and thus can be done in less

time. The third scenario is for large proteins, where one can

hopefully collect chemical shifts, dNN’s, and RDCs (but

other data might be hard to collect), and then use NVR with

our ensemble-based technique. Since our algorithm requires

only sparse data, this could make it less susceptible to the

overlap problems that can occur with large proteins. Finally,

since NVR requires only 15N-labeling, the cost of sample

preparation is less for the last two scenarios.

Our approach should be valuable in pharmacology and

drug design (Ferentz and Wagner 2000) by helping assign

proteins for which there is no close structural homolog

available. One could use our scheme to assign a subset of

peaks with high confidence, and then do a few more dis-

ambiguating NMR experiments (e.g., using selective

labeling) in order to assign the remaining peaks. Further-

more, it is possible to run the algorithm iteratively, setting

the confident assignments found in the previous iteration to
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boost the number of peaks reported with high confidence.

Our method is simple and general, and can be used with

other SBA algorithms, such as MARS, to improve their

accuracy and robustness.

Our approach has some similarities to previous work

such as Jung and Zweckstetter’s (2004b) MARS and

(Meiler and Baker 2003). Both of these works obtain

multiple assignments for a protein, and retain the subset of

peak-residue assignments that are consistent across those

assignments. The difference is in how the assignments are

computed. Jung and Zweckstetter (2004b) modulate the

predicted chemical shifts by adding Gaussian noise and

run MARS on perturbed data to obtain new assignments.

Meiler and Baker (2003) start from random assignments

and then use Monte Carlo search to optimize them. In

contrast, we compute an ensemble of structures using

NMA, and then use each structure to calculate a new

assignment. Of these three approaches, ours is the only one

that simulates the likely equilibrium conformations

assumed by the template protein. It also has an intuitive

correspondence with the NMR ensemble that generated the

experimental data. As shown in section ‘‘Application of our

framework to MARS’’, our approach can be used with

MARS; it is likely that it can also be used with other (such

as Meiler and Baker’s 2003) SBA algorithms.

As future work, we are interested in developing a single-

structure scoring function that takes into account the

dependencies between various sources of NMR data. This

would allow to choose a model from the ensemble that has

the highest assignment accuracy. Secondly, other tech-

niques that characterize the flexibility of protein structures

such as FRODA (Wells et al. 2005) or protein ensemble

method (Shehu et al. 2006) could be used and compared

with NMA using the lens of SBA. Finally, NVR currently

returns a single assignment for each template, even though

there may be many assignments consistent with the struc-

tural model. Incorporating backtracking into the

assignments as in Vitek et al. (2005) to obtain all consistent

assignments could improve the accuracy and robustness.

Availability

The NVR software as well as our scripts to run NVR on an

ensemble of proteins and aggregate the results are available

upon request. It is written in Matlab and Perl and is

approximately 10K lines.

Our scripts to run MARS on an ensemble of templates

and aggregate the results are less than 1K lines of code and

are similarly available upon request.
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Appendix

Analysis of MBM as a voting rule

Motivation

In this section, we justify our use of MBM as a voting rule

in SBA to combine the assignments for each structure in

the NMA ensemble. To that end, we show that MBM is a

maximum likelihood estimator (MLE). Maximum likeli-

hood estimation is a general technique to estimate the

unknown parameters of a distribution, given a set of

observed data values derived from the distribution. It

returns the parameters that maximize the likelihood of

observing the set of data values.

Our proof demonstrates that our voting scheme is sound

and optimal, by showing that our algorithm returns the

assignment that maximizes the likelihood. In our case, the

set of observed data values comprises the assignments for

each model in our NMA ensemble, and the unknown

parameters of the distribution are the unknown correct

assignments. An MLE estimator has many desirable

properties: In particular, it is consistent, which means that

it converges to the true value of the estimated parameter

(Wasserman 2004). This means that, as the number of

models in our NMA ensemble increases, the assignments

returned by our voting scheme converge to the correct

assignments. This proof depends on our assumption that

the assignments computed for each model are independent

and identically distributed, according to our noise model

(which is described below).

First, we formulate our algorithm as a voting scheme. In

voting, there are multiple voters and multiple candidates. Each

voter may vote for one (or a subset of) the candidates, or may

rank the alternatives. In our setting, a vote is the resonance

assignments for a structure in our NMA ensemble. Our voting

scheme aggregates these preferences to compute ‘‘consensus’’

assignments, which are returned by our algorithm.

The idea of using MLE in voting was first proposed by

de Caritat (Marquis de Condorcet 1785), who analyzed

2- and 3-candidate elections; and was extended two cen-

turies later to arbitrary number of candidates by Young

(1995). However, none of the voting rules studied in these

works corresponds to a widely-used voting rule. Conitzer

and Sandholm (2005) then studied which of the well-

known voting rules can be viewed as an MLE. For this

purpose, they adopted the following model/assumptions:

There exists an (unknown) ground truth winner (or rank-

ing) of the election w, and each voter’s vote is a noisy
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measure of this ground truth. Due to noise, each voter’s

vote may be different from the ground truth. The noise

models the probability of observing a vote vi for voter i,

given the ground truth winner w. The votes are independent

given w, and identically distributed. Under these assump-

tions, given a set of votes v1,…,vm, where m is the number

of votes, a voting rule is an MLE of the correct winner w if

it returns a winner wo that maximizes the likelihood of the

observed votes. That is, it returns:

arg max
wo

pðv1; v2; . . .; vmjwoÞ

¼ arg max
wo

pðv1jwoÞpðv2jwoÞ. . .pðvmjwoÞ

where p(v1,v2,…,vm|wi) is the probability of observing

v1,v2,…,vm if the (unknown) ground truth were wi.

Proof that MBM is an MLE

We now show that our voting rule, MBM, is the MLE of

the correct assignments. In our setting, there is a ground

truth winner, which is the correct (and unknown) (peak,

residue) assignments. The individual votes correspond to

the assignments made using each of the structures in the

NMA ensemble separately using an SBA algorithm

(Fig. 2). The MBM is done on a BPG where one set of

nodes corresponds to peaks and the other set to residues.

The edge weights are the number of structures that

assign (‘‘vote for’’) the corresponding (peak, residue)

pair.

We assume the following noise model: For each tem-

plate in the ensemble (‘‘voter’’), each peak is correctly

(resp., incorrectly) assigned with probability p (resp., q)

where p [ q, independent of other peaks, and such that if

the resulting assignments have more than one peak

assigned to the same residue, each peak is reassigned

(again with probability p to the correct residue and prob-

ability q to an incorrect residue). We further assume that

the assignments corresponding to individual models are

independent, given the correct assignments. So, the noise is

independent and identically distributed.

With this noise model, the probability of a given

assignment (vote) i in which ki of the n peaks are matched

correctly is (proportional to) pki qn�ki : The joint probability

of all m votes corresponding to all m templates together is

proportional to
Y

i

pki qn�ki ¼ paqb

a ¼
X

i

ki

b ¼ nm�
X

i

ki

ð2Þ

where the product and the sums in (2) are from i = 1,…,m.

An MLE of the correct assignment chooses an assign-

ment wo such that (2) is maximized. Fix a particular protein

and its NMA ensemble, so that n and m are constants.

Then, since p [ q and nm is a constant, (2) is maximized

when
P

i ki is maximized.
P

i ki is the number of times

each (peak, residue) assignment (for each of the structural

models) coincides with the (peak, residue) assignment in

wo. This is maximized by MBM. Therefore MBM is an

MLE of the correct assignment. (
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